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1. Introduction 

The basic equations of the linear theory of thin elastic shells 

have had little modification since Love’s first approximation theory. 

The differences between various formulations pertain mainly to the 

form of the stress strain relations. 

Methods of solution of the basic equations are usually accom- 

panied by their reduction to a system of a lesser number of equations. 

This reduction may depend on the particular shell or the particular class 

of shells. A general method, valid for an arbitrary shell which may be 

called the displacement method consists in reducing the equilibrium equa- 

tions to a system of equations for the displacements. Such a method is 

not peculiar to shell structures but is found generally in problems of 

continuum mechanics from the simple beam theory to the three dimen- 

sional theory of elasticity. By contrast, the force method which is well 

known and used in beam theory and in the problem of stretching of plates 

has had relatively less attention in shell theory than the displacement 

method. It involves the use of stress functions in a way similar to the 

use of Airy’s stress function in the plane stress problem. In shell 

theory stress functions and the equations of compatibility of strain were 

introduced (1) by Goldenweiser and Lur’e (2, 3,4). The basis of a general 

formulation of the shell problem in terms of differential equations for 

stress functions consists in expressing the equations of compatibility of 

strain in terms of the stress functions by means of the stress-strain rela- 

tions. Although the basic equations for performing this are available in 

the literature, the actual equations for the stress functions have not appar- 

ently been obtained for an arbitrary shell. The reason for this preference 

of the displacement method over the force method may lie in the possibility 

of expressing all types of boundary conditions and all the dependent varia- 

bles of the shell problem in terms of the displacements. While it may not 

be readily apparent how displacement boundary conditions can be explicitly 

1 



expressed in terms of stress functions, this is possible by obtaining 

equivalent boundary conditions in terms of strains or as natural condi- 

tions of a variational formulation (5). The problem of obtaining the 

displacements from the stress resultants and stress couples requires 

in general integration of the stress-displacement relations. It may be 

interesting to mention here that for a spherical shell the displacements 

are expressible in terms of the stress functions without the necessity of 

integration (6). 
It seems therefore desirable to formulate the force method of 

shell theory and to examine its possible advantages. This in fact becomes 

more interesting in view of the static-geometric analogy that exists in the 

basic equations of shell theory (7) and that is the basis of a duality be- 

tween the displacement and the force methods. 

A concise presentation of the basic equations of thin shells using 

mainly E. Reissner’s notation for geometric quantities, stress resultants, 

stress couples, strains and stress functions (8) will be followed by a 

presentation of a system of stress strain relations and by a discussion 

on the static-geometric analogy and .its implications. The derivation of 

the compatibility equations in terms of the stress resultants and stress 

couples is accompanied by a general discussion concerning the different 

states of stress of a shell. Finally, the differential equations for the 

stress functions are obtained. 

2. Geometric Notation 

The principal lines of curvature of the middle surface are chosen 

as coordinate lines of a system of curvilinear coordinates ( F, , 5s). The 

first and second fundamental forms are written, respectively, in the form 

d; . 
Ol d;; = - a2 

RI 
d$ +- 

R3 
d$; 
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- - 
where r is the position vector and n a unit vector normal to the middle 

surface. A right handed local reference frame is defined through the 

unit vectors, Fig. 1, 

r, 1 fl =- 
“,1 
r, 2 t2 =- 
Q2 

3-l 

3-2 

- 
n=tlxt 3-3 

2 

Differentiation formulas for the unit vectors may be written in the form 

t 
a1 2 - “111 41 t 

1,1=-Tt2-3 1,2 
=kLt 

a1 2 

t2 
t aL2 

, 
1 = 

a2 
1 

n, 1 
=al q 

Rl 

4-4 

4-2 
a2 1 - 

t2 2 = - L t 
a2 Fl 

- R2 
4-5 

, al 1 

4-3 n’2 =R 
a2 t2 

2 

a,a 1 2’ 
Rland R2 satisfy the Gauss Codazzi relations which are obtained 

by requiring the equalities tl 12 = Tl 2l etc. t , 

=01,2 
92 R 2 

aL2 +alaZ =(-J 
( d),l +( a2 ),2 

al 
RlR2 

3. Differential Equations of Equilibrium, Stress Functions. 

5-l 

5-2 

5-3 

The stress resultant vectors %l, N2 and the stress couple vectors 

Ml, M2 are written in terms of their components. Fig. 2, according to 

the relations 3 



N1 = N1 & t N12t2 t N13n 6-1 

s2 = NZltl + N22t2 + N23n 6-2 

Ml = - M12Tl -I- Mlly2 t M13; 

i$ = - MZ2tl - - 
’ M21t2 -I- M23n 

It is known that 

M 
13 

=M 
23 = 

0 

6-3 

6-4 

7 

Ml2 
and M 

23 
are called by Reissner couple stress stress couples. They 

are kept in the equations as convenient devices in the static geometric 

analogy. 

Letting i denote the surface load intensity per unit area of the 

middle surface, the equilibrium conditions of an infinitesimal element 

of volume such as represented in Fig. 3 lead to the differential equations 

(alR2), 2 + (a251), 1 f ala2G = 0 

(alM2), 2 + (a2Gl), 1 + ala2(tl x Nl t t2x N2) = 0 

8-l 

8-2 

A particular solution of these equations may be taken as a particular 

solution of the membrane theory equations. For the homogeneous prob- 

lem, i = 0, eqs. 8 may be identically satisfied by letting 

- 
aN 2 1 

= F, 
2 

9-l 

- - 
aN =-F, 

1 2 1 9-2 

- 
aM = 

2 1 
G,2 - - t a2t2 x F 9-3 

- 
aM =- 

1 2 
F,,- - - altl x F 9-4 



where 
- 

Fltl t F2t2 + F3n 10-l 

and 

G= 
Gltl -I- G2t2 

t G3: 10-2 

are two arbitrary vector stress functions. The components of F and G 

are 6 arbitrary scalar stress functions of which only 4 remain arbitrary 

upon setting -- 
n. .G, -- 2 

M 
13 

= n. M 
1 

=- -F1=O 
Q-J 

- F2 = 0 

The 6 scalar equilibrium equations take the form 

(a2Nll). 1 + (alN21).2 - a2, 1N22 t 

(alN22)9 2 t (a2N12), 1 - al, 2Nll t 

+ ala2 N 
al,2N12 R 13 + ala2Pl = 0 

1 

+ ala2 
-N 

a2, lN21 R2 23 f a1a2P2 = 0 

N1l 
N 

(a2N13), 1 + (alN23), 2 - ala2(y t $ - p3) = o 
1 2 

11-l 

11-2 

12-1 

12-2 

12-3 

(a2M11)’ 1 -I- (alM21)J2 - 9!, P22 + “I,2 Ml2 
a1a2 

+-- M23 - ala2N13 = 0 12-4 
R2 

(alM22)9 (a2M12)y 
ala2 

’ - t = 0 12-5 2 1 a1,2M11 a2, lM21 - RM13 - ala2N23 
1 

M M 
(a2M13)$ + - 12-6 1 f (alM23)9 2 ala2(N12 N21 +-s -21)=0 

1 R2 

The stress-stress function relations that satisfy identically the above equa- 

tions when i = 0 take the form 
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1 
N =- 

11 
‘llQ2 

(alF1.2 - a2, lF2) 

-1 
N22 = - - ala2 (a2F2 , 1 a1 , 2F1) 

N 
1 =- 

12 aa (alF2 2 + a2 lF1) +’ 

12 ’ ’ R2 

N 
-1 

= 7 (a2F1 - Fj 
21 al a2 , 1 

f 
al , 

2F2) 
R1 

N F3,2 F2 
13= a2 -- 

R2 

F 
N /Ai! +- F1 

23= al R 
1 

M 
1 G3 

11 =- (alG2 2 + a2 lGll +y 
Ola2 ’ ’ 2 

M 
1 

= 22 f 
G3 

a1a2 
(a2G1 , 1 al , 2G2) fy 

1 

13-1 

13-2 

13-3 

13-4 

13-5 

13-6 

13-7 

13-8 

M 
1 

12 = - ala2 (alG1 2 - a2 1G2) - F3 13-9 
, , 

1 
M21 = - - (a2G2 

ala2 , 
l-al 

, 
2.Gl I+ F3 13-10 

-k+- -F 
M23 = al 

G1 

Rl 
2 

13-11 

13-12 

by letting Ml3 = M23 = 0 the independent stress functions are reduced to 4. 

These may be chosen as G1, G3 G2, 
A 

and F3 or as Fl, F2, F3, and G3. 
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Figure 1 

Figure 2 

Figure 3 
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4. Strain Displacement Relations 

A method of obtaining linear strain-displacement relations consists 

in requiring the validity of a virtual work equation for the shell as a whole (9). 

A method based on the same idea but dealing with an infinitesimal element 

of volume of the shell avoids the integration by parts that has to be performed 

in the first method. 

Consider an element of volume of the shell, as represented in Fig. 3, 

experiencing a virtual translational displacement u and a virtual rotation W 

both functions of J,and Fz . The virtual work of the external forces acting 

on the element of volume is, except for infinitesimals of higher order, 

and per unit area of the middle surface 

1 - - 
a N .u, 

2 1 l + alN2.U,2 f [(a 21 
N ), 

a1 1 
+ 

a2 (alN2). 2 1 . U t 

- - 
a M .W, 

21 1 
taM .W, 

12 zt C( a2El 1, 1 + (alG21s2] .ZJ+- 

-- 
al a2Pa u 

Taking account of the vector equilibrium equations the expression of the 

virtual work reduces to 
- - - - - - - 
u, 

iT1’ 
1 +- y1 xLd tN 

2’ 

U’2+“2t2XW f E !a- +T;;i iI.2 

a1 a2 
1’ al 2 * - (14) 

a2 

The internal virtual work per unit area of the middle surface is written in 

the form 

Nll ’ 11 ’ N12 ‘12 + N13 ‘13 + N21 ‘21 ’ N22 ‘22 + N23 E23 

(15) 

+- M11X,, •t M12X12 + Ml3 %3 + M21 3c2l ’ M22 X22 + M23X23 

where the E 
ij 

‘s and the x..’ s are the desired strain quantities. The above 
1J 

expression suggests its representation as a sum of dot products in the form 



il.gl tN2. z, tM1.X1.tM2.X2 
where 

2 1 = El& tE12T.2 + E13” 

(16) 

17-1 

3 2 = E2 r1 t Ez2fi t ‘23” 

z1 = -x12fi t XllT2 t x,,n 

3T, = - Xz2T1 t z21t2 t Xz3” 

17-2 

17-3 

17-4 

The equality between the external work, after taking account of equilibrium, 
- 

and the internal work for arbitrary Nl, iT2, Ml and M2 yields 
- 

tT1 x-22 18-1 

US 

-22 =g tt,xW 18-2 

18-3 

x2 =22 18-4 
a2 

By requiring the continuity relations i, 12 =G, 21 andz, l2 =x, 2l to hold, 

the vector equations of compatibility of strain are obtained in the form 

(a,X,), 1 - (al% 1)s2 = 0 19-l 

(a2z2), 1 - (a,El), 2 + ala2(tl x F, - t2 XT,) = 0 

Eqs. 18 yield 12 strain displacement relations in the form 

19-2 

El1 z-J--- 
IQZUl, 1 + a1,2 

u3 

a1a2 
u ‘+R 2 

1 
20-l 
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gz2 = -!- (alu2 2 t a2 lul) tv3 
ala2 , , R& 

f12= --& (a U 
1 2 

2291 , - al 2ul) - d3 

Ezl =L (a 1 u - ala2 1,2 a2,1 u 2 )i-w 3 

E =u3. -3 
13 

“1 
R1 +Q 2 

E =,u3,2 -u2 
23 

-&) 

a2 R2 1 

x =‘-(aW 
11 

ala2 2291 , - al zW1) 

x 1 
22=-- 

al a2 
(alwl 2 - a2 P2) , t 

x 1 a 
12=-- 

al a2 
(a2W1 1 + al 2W2) - -jy- , , 

1 

51 = 
L33 

-L (a1u2 2fa2 lWl)f- 
ala2 , t R2 

x _ d3,l til -- 
13 

al R1 

x _ W3,2 W2 -- 
23 

a2 R2 

20-l 

20-3 

20-4 

20-5 

20-6 

20-7 

20-8 

20-9 

20-10 

20-11 

20-12 

Eqs. 19 yield 6 scalar compatibility equations relating the 12 components 

of g, I g 9 ?c, I and x in the form -* 

(a2 X2,) - (a1 Xl,) - , 1 , 2 a2 1 Xl1 - al %,, - o1"2 X t , 2 R1 23 = 0 21-1 

(alXll) - - , 2 (a2Xz1) , 1 a1 , 2X22 - a2 1Xl2 tala2 = , R2 ;Y13 0 21-2 
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(a2Xz3) 
x 22 

1 - (alX13) 2 + ala2(y t =l)=o -- 
, , 1 R2 

21-3 

(a2 E22) - (al E12) - a2, - - = 9 1 , 2 1 Ell a1 2 E21 _01(12E t 
R2 

13 ala2X23 0 21-4 

(Q1 El,), - (a2 Ezl) - - - - ala2 = 2 , 1 al 2 Ez2 a2 g -I- 0 21-5 9 , 1 El, 
R1 

23 ala2 ?3 

121 El2 
(a2 Ez3) 1 - (al E13),2 + ala2( X2, - Xl2 -y-- t-7 ) = 0 

, 1 R2 
21-6 

If xl3 andXz3 are eliminated from these equations ‘there results the 4 com- 

patibility equations of reference (8). 

A physical interpretation of the strain quantities defined above seems 

desirable and may be made by studying geometrically the deformation of the 
- - 

middle surface taking u as the translation vector and W as the rotation 

vector of the normal to the shell displacing as a rigid body. Within the 

framework of linear strain displacement relations it is found that El1 and 

E 
22 

are extensional strains in the directions of tl and t 
2 ’ respectively. 

The shear strain between these 2 directions is ( El2 + E 
-21 

). The transverse 

shear strains between the normal and the directions of tl andt 
2 

are E 
13 

and 

& 
23’ 

respectively. If normals to the undeformed middle surface are assumed 

to displace into normals to the deformed middle surface, then El, = EZ3 = 0 

andXl1 - Ell/Rl and x2, - EZ2/R 2 
are the changes of the normal curva- 

tures of the middle surface in the directions of tl and t 
2’ 

respectively. The 

twist is Xl2 + EZl/Rl = x21 + g12/R2. For inextensible deformations, such 

that El, = E,, = El2 = E,, = 0, 31, Xz2 and xl2 = x21 become changes of 

curvature and twist, respectively, and are often referred to as such notwith- 

standing the inextensibility assumption. It may be noted that the “physical” 

strains mentioned above do not depend on the component of rotation ti3 about 

the normal. The strain quantities xl3 and xz3 do not appear in the stress 

strain relations of shell theory and have not apparently reveived a physical 

interpretation in the literature. They may be identified with the quantities 
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5, Andre%, respectively, in ref. (7) eqs. 19. 1, p. 52. It is shown in 

what follows that for inextensional deformations and with normals 

remaining normal, % 
13 

and X 
23 

may be interpreted as changes of the 

geodesic curvatures of the coordinate lines (F,) and (F,), respectively. 

If (C) is a curve drawn on the middle surface with arclength s, the normal 

curvature Kn in the direction of (C) and the geodesic curvature K 
f3 

of (C) 

are obtained through the relation 

2- 
dr 
- =-Kn+Kgt 
ds2 

n (22) 

- 
where t is some unit vector in the plane tangent to the surface. Taking as 

curve (C) the coordinate line ( F,) the above equation takes the form 

- 
r, - 

--y),1 =$i- n a1,2 
1 1,1=-Xl1 

- 

al ala2 
t2 

al 2 
(- ) 

ala2 
) is thus the geodesic curvature of the line (f,). In order to per- 

form the same cal culations for the deformed line ( s ) it is first noted that 

the assumption of inextensibility allows setting El, = 0 and interpreting 

a3 as the rotation about the normal of the tangent to the line ( F,). Assum- 

ing also that normals remain normal we can write 
- - - 
u, 

5,= l +altlXLC) 0 = 
al 

Writing the equation similar to eq. 22 for the deformed line ( F, ),obtain 

4 
(T -4 f 1 

1 
al al 

Z.-i- (T- 
‘1 al 

- Tl x2, 
‘1 

or after performing the differentiation 

q 
(5: t u,, l) =- (+ al 2 t 

al ‘1 11 
t~ll)(&,x~) -A 

a1 a2 
G2 - WlntW3tl) t x 

13 2 tz4) 
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It is apparent now by comparing eqs. 23 and 24 that except for non linear 

terms in the rotations the geodesic curvature of the deformed line (F,) 

Ol 2 
is (--- 

ala2 
+ X13). 

5. Stress-Strain Relations 

It is known that different systems of stress-strain relations for 

thin elastic and isotropic shells may be found in the literature. None of 

these systems is presently recognized to be preferable to the others. 

It is claimed by Goldenweiser (10) that the choice of a system of stress- 

strain relations may best be decided upon on the basis of the particular 

problem at hand. The discrepancies between different systems of stress 

strain relations involve generally terms of relative order h/R and are 

generally unimportant. Some desirable features, however, of a sys- 

tem of stress strain relations to be used for general derivations are the 

following 

a) no contradiction between the 6th non differential equilibrium 

equation (with Ml3 = Mz3 = 0) and the stress strain relations. 

Such a contradiction occurs for example when the stress 

strain relations include the 2 relations N 12 = N21 
and M 

12 = 
M 

21’ 
b) A form of the stress strain relations similar to that of 3 

dimensional elasticity and insuring the validity of general 

energy theorems. The form proposed by Reissner namely, 

, ‘J 

x _ a W’k 
ij 2M.. 

1J 
i,j # 3 (25) 

where W*< is the complementary strain energy density, 

satisfies the above requirement. 

cl A functional form of W* that is invariant under a change of 

the curvilinear coordinates of the middle surface. 
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More than one form of W* satisfying the 3 above requirements 

It is proposed to use 

1 
w* = 2Eh - (Nil c + N22)2 - 2(1 t-9 )W11Nz2 - 

t6 - (M11 
Eh3 

I: + Mz212 - 2(1 f3W11M2, - M12Mzl) 
7 

and to adopt as stress strain relations those obtained from W* 

eqs. 25 

is possible. 

(26) 

through 

El1 = sh (Nll -3 Nz2) 27-l xl1 = -+ (Ml1 - “Mz2) 27-5 
Eh 

E &i&j- x = 12(1 f 3 1 M 27-6 
12 Eh 21 

27-2 
12 

Eh3 21 

E = =N12 27-3 Tl =v, 
12 

27-7 
21 Eh Eh 

E22 = +h (Nz2 - YNll) 27-4 31 =12 (Mz2 - PM11) 
” Eh3 

27-8 

The form of W* implies a shell rigid with regard to transverse shear 

deformation i. e. 

El3 = Ez3 = 0 28 

The strain energy density W has a form completely analogous to WC, namely 

w= 
Eh 

2(1- v2) 
( El1 f &2212 - a1 - 9 )( E,,e,, - El2 f,,) 3 

29 

+ Eh3 

24(1- 3’) 
31 + x22)2 - 2(1- 3)( YllXZ2 - x1,x,,) 

3 

with the property 
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N.. =2x 
‘J arij i,j f3 

JW 
M.. =- 

U b Xij 
(30) 

or 

Eh 
N1l = 1 _ $2 ( 51 + y Ez2) 

Eh E N12 =- 
1 t3 21 

Eh E Nzl =- 
1 tY 12 

N Eh 22=1 32 (E,, f 9 Q 

6. Static Geometric Analogy 

31-1 

31-2 

31-3 

31-4 

M 
Eh3 

l1 
=- o,, 

12(1- U2) 
+aJ xz2, 

M 
Eh3 

12 = 12(1 -ku) x2l 

M 
Eh3 x 

21 =- 12(1 tP) 12 

M 
Eh3 

22 =- 
12(1 - V2) 

- 
Inspection of the equilibrium equations, eqs. 8, for p = 0, and 

of the compatibility equations, eqs. 19, in vector form, shows that one 

set of equations is transformed into the other by the correspondence 

cated below 

Fl = NlliTl + N12T2 t N13ii F2 = - XZ2Tl tXz1T2 t xz3” 

TT2 = NZltl t NZ2t2 t Nz3” - 3.. = X12Tl - x1 lF2 - X13” 

Ml = - M12tl t MllT2+ M13” z2 = E L-E t tfz3E 
21 1 22 2 

M2= - MZ2$ t M21t2 t Mz3” ‘El = - El lTl - E12F2 - &1 3n 

Also, the stress-stress function relations eqs. 9 are transformed 

strain-displacement relations, eqs. 18, by the correspondence 

F = Flrl t F2r2 t F3; k, = wltlt 412T2 t w3n 

8- = Glf f G2T2 t G3g ii = ultl - tu2r2 tu3ii 

into the 

31-5 

31-6 

31-7 

31-8 

indi- 

32-l 

32-2 

32-3 

32-4 

32-5 

32-6 

15 



In particular the following analogies are of interest 

M =M 
13 23= 

0 El3 = fz3 = 0 

Effect of M =M 
12 21 

Effect of El, = E 
21 

on dis- 

on stress functions placements 

32-7 

4 equations obtained 4 equations obtained by eliminating 

by eliminating N13 x 
13 

and X2, from the 6 scalar com- 

and N 23 from the 6 patibility equations 

scalar equilibrium 

equations 

The static geometric analogy indicated above may be extended to 

the stress strain relations if the correspondence indicated below is 

adopted. 

3 -0 33-l 

12 

Eh3 

h2 

Then the analogy may be completed as follows 

W*(N. ., Mij) 
1J 

&ij =g 
ij 

X =2.X? i,j#3 
ij aM.. 

1J 

w(E ‘ij) 
ij’ 

M 
JW 

ij =>x 

N =aw 
ij >Eij 

i,j # 3 

33-2 

33-3 

33-4 

33-5 

33-6 

Further, the reduction of the number of stress functions to 4 through the 

requirement Ml 3 =M 
23 

= 0 is analogous to the reduction of the number of 

displacement unknowns to 4 through the requirement g13 = Ez3 = 0. Thus 

W expressed in terms of ul, u2, u3 and W, is analogous to W* expressed 

in terms of G G G 
1’ 2’ 3’ 

and F . 
3 
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W*(Gl, G2, G3, F3) wy U2’ U3’ w,) 33-7 

It may also be noted that Fl, F2, F3 and G3 may be chosen as the 4 

independent stress functions and correspondingly Wl, ti2, ti3, and u3 

may be chosen as the 4 independent displacements. Finally if the 6th 

equilibrium equation is used to determine W 
3 

in terms of the 3 remain- 

ing displacements by means of the stress-strain relations, the analogue 

of this is the use of the 6th compatibility equation to determine F in 3 
terms of the 3 remaining stress functions. In reducing the basic equa- 

tions of thin shells to a system of differential equations for the displace- 

ments the 6th equilibrium equation may be ignored and ti3 may be deter- 

mined instead by the relation 

The analogue of this in obtaining equations for the stress functions is 

the deletion of the 6th compatibility equation and the determination of 

the stress function F3 through the relation 

M 
12 

=M 
21 

The correspondence between Eh/l - 3 ’ and 12/Eh3 in the static geometric 

analogy may be avoided through homogenization of the analogous quantities. 

The stress couples are replaced by non-dimensional quantities and the 

stress resultants replaced by quantities having the dimension of a curva- 

ture according to the relations 

Tij = \1120 3 34- 1 

Hij = ia 2 34-2 

The stress functions corresponding to T.. and H.. are, in vector form, 
V iJ 

35-l 
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a= 
- 

F is non dimensional and Q has the dimension of a length. W* takes 

the form 

w* = Eh3 

24(1 - 3’) 
Ull + T22)2 - 2( 1 +V W11Tz2 - T12Tz1) 

I 

t Eh 

2(1 - LJ2) 
Wll f Hz2)’ - 2(1 fy)(HllHz2 - H12Hz1) 1 

35-2 

(36) 

and is the analogue of W, eq. 29, by changing 3 into - ti and applying the 

static geometric analogy. The stress strain relations take the form 

i,j # 3 

They are the analogues of the relations 

H =v;2(1_Jz, aw 
ij 

Eh2 bXij 

T.. = 
J 12(1 -U2) aw 

V Eh2 a E.. 
1J 

Lj # 3 

(37) 

(38) 

From the preceding it may be stated that results obtained in terms of dis- 

placements may be transformed into results for the stress functions by 

changing 3 into - 3 and using the homogeneous static geometric analogy. 

In particular, differential equations for the displacements may be directly 

transformed into differential equations for the stress functions. The 

extension of the applicability of the static geometric analogy to the subject 

of boundary conditions should be of great interest if it can be shown that 

the solution of a specific problem may be obtained from the solution of the 

analogous but physically different problem. Only a general consideration 
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of this question will be attempted here. The analogues of assigned displace- 

ment boundary values are assigned stress-function boundary values. The 

displacement boundary value problem can be transformed into a physically. 

equivalent problem where strains of the boundary surface are assigned. 

The analogous problem is one in which stress resultants and stress 

couples are assigned at the boundary. These are expressed in terms of 

stress functions as the analogous strains are expressed in terms of the dis- 

placements. It appears therefore that the static geometric analogy may be 

applied to 2 physically different but mathematically analogous problems and 

allows obtaining the solution of one from the solution of the other. 

7. Compatibility Equations in Terms of the Stress Resultants and Stress 

Couples. General Considerations on States of Stress. 

(alN1l)’ 2 - (a2Nd 1 - al 2N22 - a2 1 N21 , , 

- * palN22)32 + (a2N12)9 1 -a1,2 N1l + a2, 1 N2;1 =-Eh ala2X13 39-1 

(a2N22)’ 1 - (alNZ1)’ 2 - a2 IN11 - Ql 2 52 , , 

- v 1 + (alN21),2 - a2 1N22 f al , , 
2N12 

1 
= Ehala2Xz3 39-2 

(alM1l)’ 2 - v5& 1 - Ql p22 - Q2 pzl , t 

- ~[~alM22)~2 + (a2M12), 1 - al, 2Mll + a2, lM21] = - $- Ola2 e 39-3 

(“z”22)1 1 - (a1M21)s 2 - a2 l”ll - 01 252 , , 

(a2M11), 1 + (alMZ1), 2 - a2 1M22 + a1 2M12 
I 

Eh3 a a 723 = 
12 

1 2 - 39-4 
, , R1 

M 

al O2( 
22 - Y”ll t M11 - 3”22 

R1 R2 
(a1 X,3)y 2 - (a2 ‘23)’ l] 

39-5 
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h2 N21 N12 
M 

12 - M21 +iz ‘R 
--)=O 

2 R1 
39-6 

The 4 first equations may be transformed through use of the equilibrium 

equations into the form 

aQ 
(lf3)G+N,2=-Eha2X13- (1 t),)a2p2 

R2 

alQl (1 + p )- t N, 1 = Ehal x 23- (1 t 3) alp1 
R1 

Eh3 OZx13 
(1 tY) a2Q2 - MS2 ~12 

R2 

Eh 3 a1X23 
(1 + 9 blQl - M,l = -12 

R1 

M M 
(L +L 

R1 R2 
)M- (1 tV)+tA 

Eh3 (a1 Xl,)3 2 - (a2 Y23)’ 1 

R1 
R2 )= 

12 
al a2 

h2 N21 N12 
M 

12 -Mzl+~(-- --) =o 
R2 R1 

where the following notation was introduced 

N = Nll + N22 
M=M tM 

11 22 

Q2 = N23 

40-l 

40-Z 

40-3. 

40-4 

40-5 

40-6 

41-1 

41-2 

Eliminating xl3 and %23 from the first 5 equations and letting in the coef- 

ficients of Ql and Q, 

h2 
1 t- h2 31 

12R; 
Slf- 

12R; 

obtain 

(1 f $)a2Q2 - M, 2 = - I 2 + (1 f 3 )a2P2) 

h2 
(1 t 3 )alQl - MS 1 = -F (No 1 ’ (l ’ 3)alpl) 

1 

42-l 

42-2 
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(+ t+M - (1 +v)(- M11 + 
M 

22 

R2 
-1 

R1 R2 
J = 

1 

1-l-v 

L 

Q2 -- 
ala2 

(Y(F2 
Q1 

+ ??,I), 2 + (a2(-fi- + p,)), 1 
1 1 

42-3 

where A is the Laplace operator 

A( )=L I ( 
a2( I,1 

1 +t 
a+ L, 

ala2 a1 a2 
1 43 

‘1 ‘2 
1 

The 3 equations above agree except for negligible terms with those obtained 

in ref. (11) through a different system of stress-strain relations. Eqs. 

42 may be simplified through an analysis of the relative orders of magni- 

tude of the terms involved. In order to do this the curvilinear coordinates 

will be considered as non dimensional variables such as the Lame/parameters 

al 
and a2 have the dimensions of lengths of the same order of magnitude 

as the radii of curvature of the coordinate lines. It will be assumed for 

the purposes of this discussion that R denotes the order of magnitude of 

R1’ R2’ a1 
and a 

2 
or, if needed, of the smallest of these quantities. 

3 cases corresponding to different behaviors of a thin shell are of interest. 

a) Membrane Solution --- 

Assuming that differentiation with regard to F, and T2 does not 

increase the order of magnitude, eqs. 42 may be satisfied by stress 

resultants and stress couples related through the order of magnitude 

relations 

Q = O(y) = o(h 
2 

lNz’ Rp) ) 
R 

44-l 

where Q, N, M and p are generic symbols indicating transverse shears, 

in-plane stress resultants, stress couples and surface load, respectively. 

The above relation corresponds to the case where the different terms in 

each of eqs. 42 are of the same order of magnitude except the right hand 

side of eq. 42-3 which is negligible as being of relative order h2/R2. 
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The relation Q = O(M/R) is consistent with the moment equilibrium equa- 
2 

tions , whereas the relation Q = O(h’N/R ) allows neglecting Ql and Q 

in the force equilibrium equations and the relation M/R = O(h2N/R2) 
2 

allows neglecting Ml2 and M21 in the 6th equilibrium equation. The 

result is the equilibrium equations of the membrane theory. For the 

validity of the original assumptions the displacements of the membrane 

theory must imply in plane strains and changes of curvature satisfying 

the order of magnitude relation 

x= O( E/R) 44-2 

This will be the case if the inextensional bending that arises from the 

homogeneous solution of the strain displacement relations of the membrane 

theory is made to agree with eq. 44-2 and if smoothness of load and geo- 

metry of shell satisfy the requirement that differentiation does not change 

the order of magnitude. 

b) Inextensional Bending Solution 

The displacements of the membrane solution include the 

general solution for the displacements of the equations El1 = Ez2 = El, = 

&,, = 0. Th ese displacements yield, through use of the stress-strain 

relations , zero in plane stress resultants and non zero stress couples 

which, on the basis of the compatibility equations, satisfy the relation 

(‘+-L Ml1 M 

R1 R2 
)M-(ltL))(-t+)=O 

R1 2 
45-l 

M 
12 = M21 

45-2 

The transverse shears are obtained through the moment equilibrium equa- 

tions in the form 

M9 1 
‘1 = (1 +#)a 

1 

46-l 

Ms2 
Q2 = (1 t3)a 

2 
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If the geometric parameters of the middle surface are not rapidly vary- 

ing it may be assumed that differentiation does not increase the order of 

magnitude. From eqs. 46 it is possible to write 

Q = .O(%) 47-1 

With transverse shears satisfying eq. 47-l the stress resultants needed to 

satisfy force equilibrium and the 6th equilibrium equation have the order 

of magnitude 

N = O(%) 47-2 

i.e. they produce stresses that are negligible with regard to the bending 

stresses as being of relative order h/R. Eq. 47-2 is in accordance with 

setting fll = gz2 = El2 = E21 = 0 in the compatibility equations. 

It may be mentioned here that for a spherical shell the inextensional 

solution is an exact solution o’f the original equations (6). For shells 

of positive Gaussian curvature such that (1 /R 1 - 1 /R2) i,s small compared 

to 1 /Rl and 1/R2, eq. 45-l shows that M = Ml1 t Mz2 is small compared 

to M11 
and M 

22’ 
These are then of the same order of magnitude but have 

different signs. Ql and Q, are then smaller than what is implied by eq. 

47-l and accordingly the in-plane stress resultants needed to satisfy 

equilibrium are smaller than implied by 47-2. 

For she 11s of negative Gaussian curvature such that l/R1 t 1 /R2 

is small compared to l/R1 and 1 /R 
2’% 

and M 
22 

tend to be of the same 

order of magnitude and of the same sign. There is, however, no reduc- 

tion in the order of magnitude of Ql, Q, and the in-plane stress resultants. 

Before considering a third type of state of stress it may be interesting to 

show the analogy between the membrane solution for the case of zero sur- 

face load and the inextensional bending solution. This analogy is summar- 

ized below. 
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Solution of equilibrium equations 

withp=OandMll =Mz2=M21 = 

Q, = Q2 = 0. 

Displacements u , u , u , ri, 
1 2 3 3 

as obtained by integrating the 

stress strain relations between 

in-plane strains and stress 

resultants 

Changes of curvature due to ul, 

U2’ U3’ w3. 

Solution of compatibility equations 

= gz2 = El2 = Ezl = Xl3 = 

Stress functions Gl, G2, G3, F3 

as obtained by integrating the stress 

strain relations between stress 

couples and changes of curvature. 

In-plane stress resultants due to 

G1, G2s G3, F3. 

If the analogy above is set in terms of the dimensionally homogeneous 

quantities defined in sec. 2.5 then it may be extended to the order of 

magnitude relationships’ in each solution. These should not be affected 

by the change of ti into - 3 . Thus if x = 0( e /R) in the membrane 

solution, then N = O(M/R) in the inextensional solution. 

c) Edge Zone Solution or Boundary Layer 

If it is assumed that differentiation with regard to at 

least one coordinate increases the order of magnitude by a factor of 

order < p then it is generally possible to satisfy the shell equations - 

by bending stresses of an order of magnitude equal to or larger than that 

of the membrane stresses i. e. M/h >O(N) 48 - 

In that case the right hand sides of eqs. 42-1, 2 are negligible as being 

of relative order < h/R. The transverse shears are thus related to M - 

as in b) through the relations 

(1 +-P)a2Q2 =Mp2 49-l 

(1 f 3 )alQ1 = M, 1 49-2 

In eq. 42-3 the transverse shear terms are negligible as being of relative 

order < h/R but AN which involves double differentiation may be of the - 

same order of magnitude as the stress couple term. In the force equili- 
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brium equations the transverse shear terms may be of relative order 

Jh/R in the first 2 equations but of relative order unity in the third 

equation. 

It may be noted here that neglecting the transverse shear terms 

in the first 2 equilibrium equations as is done for shallow shells may 

also be done for non shallow shells if )‘h/R is negligible with regard to 

unity. This latter approximation is made in obtaining the so-called 

Mustari-Vlassow equations (12). Finally the assumption concerning the 

behavior of the dependent variables under differentiation is consistent 

with the type of differential equations. 

The 3 states of stress described above are treated in the literature. 

The orders of magnitude of the errors associated with their extraction 

from the general equations were the object of the above discussion. By 

superimposing them it is generally possible to satisfy 4 arbitrary boun- 

dary conditions. They represent then the complete solutions of the 

original equations. 

From the preceding discussion it appears that in cases (b) and (c) 

eqs. 42 may be simplified by deleting their right hand sides. In case (a) 

eqs. 42 are not used; but remembering that the membrane solution may 

be formally obtained by letting Ql = Q2 = Ml2 = M21 = 0 in the equilibrium 

equation it is possible to write in all cases 

(1 + 3 )a2Q2 - M, 2 = 0 50-l 

(1 +P)alQl - M,l = 0 50-2 

AN+12 (L +L c M M 

h2 R1 R2 
)M-(l+,,)+ +-=) 

R1 R2 
=0 

The first 2 equations may be replaced by 

b2Q2L 1 - (alQ1), 2 = o 

50-3 

51-1 

ala2 (alQ21s2 + (a,Q,), 1 - rti AM = 0 51-2 

25 



I 

Finally upon taking account of the third equilibrium equation we obtain 

the system of equations 

(a2Q2), 1 - (a,Q,), 2 = 0 

N N 
11 +22 

-p3- 2, 
AM=O 

R1 R2 

52-l 

52-2 

52-3 

It may be noted that eq. 40-6 which is sometimes called a seventh equilibrium 

equation did not enter into the preceding discussion. It is known that it 

may be replaced with a relative error not exceeding O(h/R) by 

M -0 
12 - M21 - 

52-4 

8. Differential Equations for the Stress Functions 

The general solution of the 6 equilibrium equations will be consid- 

ered as the sum of a particular solution and of the general solution of 

the homogeneous equations. The particular solution will be taken as a 

particular solution of the equilibrium equations of the membrane theory 

and will be denoted by 

N 
11 

*, N 
22 

*, N12* = NZ1* 

The general solution of the homogeneous equilibrium equations consists 

of the stress-stress functions relations eqs. 13. In expressing eqs. 52 

in terms of the stress functions, the following expressions are obtained 

N 
Nil + 22 1 al a2F2 -- 

R1 R2 
-p3 =- 

ala2 c 
(R F1) - (---- 1 

1 ‘2 R2 ‘1 1 
M =M t M22 = ($ t 

(a1G219 2 + (a2G1), 1 

11 
1 

+G3 t 
R2 a1a2 

53-l 

53-2 
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M 
22 ll+ 

M 
2G3 1 =- +- 

c 
a1G2 Q2G1 

R1 R2 RlR2 
(- - 

a1a2 R1 Is2 + ( R2 Is1 I 

N=Nll +N22= 
(alFlIp 2 - (a2F2h 1 

t N* 
ala2 

. . 

53-3 

53-4 

Eqs. 52-1, 2, 3 take then the form 

d2F1 alF2 
ala2 AF3 - t-q-- 1, 1 - t-q- ),2 = 0 54- 1 

alFl aF 
-94 -2 A[(t+L)G3+ 

(a1G2), 2 + (a2Gl), 1 
(----I .J = 0 

R1 ‘2 R2 ‘1 
R 2 a1a2 

54-2 

A 
(a1F11s2 - (a2F2), 1 2(1 +Y ) 

“la2 
- R R ] G3 + 

1 2 

(a1G2L2 + ta2Gl), 1 1 t3 a1G2 a2Gl -- 
a1 a2 a1 a2 

(- 1 
R1 ‘2 

+ (- R2 1,; +AN* = 0 

54-3 

In these equations F1 and F2 are related to G 
1 

, G2, G3 through the 

relations 
G 

Fl = 3,2 G2 -- 55-1 
a2 R2 

F2 = _ G3,1 +“1 55-2 
a1 R1 

and if eq. 40-6 is replaced by Ml2 = M21, F3 is determined in terms of 

G1 and G2 through the relation 

1 (a2G2), 1 - (alG1)9 2 
F3 =y 

ala2 
55-3 
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In terms of Gl, G2, G3 eqs. 54 take the form 

ala2 a 
C 

(a2G2), 1 - (alGl), 2 

2 “la2 1 

DG3 
+A++ 

C '1 G3 
R1 R2 

G aG G aG 
+=..2) +(.A2/J.l) =o 

R1 RlR2 ‘1 R2 RlR2 ‘2 

56-l 

t 
(alG2), 2 f (a2Gl), 1 1 1 -ala2 [ a2G1 

al a2 
---(-I + 

RlR2 ‘1 

a1G2 
aG 

(- 1 
2 1 

R2 ‘2 
+ (----- 1 

AAGj -Lli 
R1 ‘I)+12 2(1 +$I 

a1a2 h2 

(’ +L)2- 

R1 R2 R1R2 
I 

G + 
3 

aG 
1 2 

(-) =o 
RlR2 ‘2 

3 
56-2 

(alG2), 2 + (a2G1), 1 
-- +AN* = 0 

ala2 

56-3 

where 

C 
a2( 1, 1 

D( ) = --!- ( a R I,, +( 
all I,, 

a1a2 1 2 
a R 

2 1 
),2 

I 
57 
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9. Summary and Conclusion 

A formulation of the equations of thin elastic shells including a 

discussion of the static geometric analogy and of the different types of 

states of stress was presented. The differential equations for the stress 

functions were also obtained. The proposed system of stress strain 

relations has not apparently been used before. It was derived, however, 

from an accepted form, of the complementary strain energy function and 

lead to results in accordance with those of other established formulations. 

It has a simple form and is invariant in a change of curvilinear coordinates. 

In the continuation of this work it is proposed to investigate the 

equations describing the particular states of stress, their possible simpli- 

fication and their specialization to certain particular shells. A more thor- 

ough investigation of the static geometric analogy is also proposed in view 

of the possibility of directly relating solutions in terms of displacements 

to solutions of different problems in terms of stress functions and also in 

view of combining both displacements and stress functions in one system 

of differential equations. 



REFERENCES 

1. V. V. Novozhilov, “The Theory of Thin Shells”, P. Noordhoff 
Ltd. , 1959, p. 5. 

2. A. L. Goldenweiser, “Additions and Corrections to the Theory of 
Thin Shells”, “Plates and Shells”, Gostroiizdat, 1939. 

3. A. L. Goldenweiser, “The Equations of the Theory of Shells”, 
Prikl. Mat. Mekh. , Akademiya Nauk. S. S. S. R. , IV, 2, 1940. 

4. A. I. Lur’e , “The General Theory of Thin Elastic Shells”, Prikl. 
Mat. Mekh., Akademiya Nauk. S. S. S. R. , IV, 2, 1940. 

5. Z. M. Elias, “A Note on the Cartesian Formulation of the Membrane 
Theory”, Submitted as partial progress report to NASA. 

6. Z. M. Elias, “Analysis of Spherical Shells with Stress Functions”, 
J. Eng. Mech. Div. , A. S. C. E , Dec. 1964. 

7. A. L. Goldenweiser, “Theory of Elastic Thin Shells”, Pergammon 
Press, 1961, p. 92. 

8. E. Reissner, “A Note on Stress Functions and Compatibility Equa- 
tions in Shell Theory, Topics in Applied Mechanics, Elsevier 
Publishing Co. , New York, 1965. 

9. E. Reissner, “Variational Considerations for Elastic Beams and 
Shells”, J. Eng. Mech. Div. , A. S. C. E. , Feb. 1962. 

10. A. L. Goldenweiser, 9. &t., p. 84. 

11. V. V. Novozhilov, 9. cit., p. 77. - 

12. V. V. Novozhilov, 9. cit., p. 84. - 

NASA-Langley, 1966 ~~-568 



“The aeronautical and space activities of the United States shall be 
roxducted so as to contribute . . . to the expansion of humal knowl- 
edge of phenomena in the atmosphere and space. The Admit&ration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results thereof .” 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and technical information considered 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: Information less broad in scope but nevertheless 
of imporrance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distri- 
bution because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Technical information generated in con- 
nection with a NASA contract or grant and released under NASA auspices. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

TECHNICAL REPRINTS: Information derived from NASA activities 
and initially published in the form of journal articles. 

SPECIAL PUBLICATIONS: Information derived from or of value to 
NASA activities but not necessarily reporting the results ,of individual 
NASA-programmed scientific efforts. Publications include conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. 20546 


